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Abstract

We discuss how to describe the Markov chain underlying a generalized stochastic Petri net using Kro-
necker operators on smaller matrices. We extend previous approaches by allowing both an extensive
type of marking-dependent behavior for the transitions and the presence of immediate synchronizations.
The derivation of the results is thoroughly formalized, including the use of Kronecker operators in the
treatment of the vanishing markings and the computation of impulse-based reward measures. We use
our techniques to analyze a model whose solution using conventional methods would fail because of the

state-space explosion. In the conclusion, we point out ideas to parallelize our approach.
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1 Introduction

Generalized stochastic Petri nets (GSPNs) [2, 3, 6] are ideally suited to model a large class of performance
and reliability problems, but their numerical analysis requires the solution of a very large continuous-
time Markov chain (CTMC). The size of the transition rate matrix R for the CTMC is the main obstacle,
since its memory requirements can easily exceed the capacity of today’s (and tomorrow’s) machines even
when sparse storage techniques are employed.

A possible approach to this problem is to store R implicitly. Plateau [14] proposed the use of
Kronecker operators for the description of the transition rate matrix of a structured model composed
of a set of “synchronized” stochastic automata, a subclass of GSPNs. Buchholz [4] used a similar idea
for Markovian closed asynchronous queueing networks, and Takahashi [17] used it for open queueing
networks with communication blocking. Donatelli [10, 11] adapted the approach to GSPNs, defining
first the “superposed stochastic automata”, then the “superposed GSPNs”. Later, Buchholz [5] applied
the concept to the special case of marked graphs and Kemper [12] addressed some of the problems in
[11], extending the applicability of the results.

These approaches have in common a decomposition of the model into a set of submodels, so that
the state space of the CTMC underlying the entire model is a subset of the cross-product of the state
spaces of the CTMCUs underlying each submodel. This implies that the transition rate for the entire
model can be described using Kronecker operators on smaller matrices.

Focusing on GSPNs, the result of decomposing a GSPN is a set of largely independent sub-GSPNs,
but some transitions will be shared by multiple sub-GSPNs, to model interactions among them. If a
transition ¢; is shared by two sub-GSPNs A; and A;, and ¢; has input and output places in both of
them, this models a synchronization. A; and Ay “wait for each other” and the event corresponding to
1; occurs only when they are both “ready”. An alternative case arises when ¢; has its input places in A,
and its output places in As. This describes an asynchronous (and asymmetric) communication, since A
must “wait for permission” from A;. However, if an output place of ¢; in A; has a capacity defined for
it, Ay will wait for A, as well. One of the contributions of our work is to present a unified framework for
all these types of interactions. Indeed, we do not assume that the net possesses any particular structure.

The solution of a decomposed GSPN is then based on the following idea [11]. Let n; be the number
of states in Sk, the state space for the CTMC underlying the i-th sub-GSPN, ¢ = 1,...,N. S =
St x ... x 8N D 87 is the “potential state space” for the model, usually (much) larger than the actual

state space St, so that a transition rate matrix R’ is defined using Kronecker algebra:

N N
R-GR+ Y QRY,
i=1 tiET* i=1
where R’ describes the local transitions for the i-th sub-GSPN (including the effect of immediate
transitions), 7 * is the set of synchronizing transitions, which must be timed, and the “corrective matrix”
R describes the effect of ¢; on the i-th sub-GSPN.
The actual transition rate matrix R can be obtained from R’ by eliminating the rows and columns
corresponding to the unreachable states in 8% \ S7, but this requires an additional overhead, since

the composition of a marking does not directly indicate whether it is reachable or not. Hence, an



alternative approach was initially suggested. The power or Jacobi method is used to compute the
steady-state solution in a vector o’ of size |S;|. By assigning a nonzero initial probability only to
markings in Sy, the solution &’ is guaranteed to be zero for any marking m € 87\ Sr. This simplifies
the algorithm, since m can now be interpreted as the mixed-base integer index of the corresponding
entries in R and #@’, but the memory requirement might be excessive when |S;| > |Sr|.

To reduce the impact of unreachable markings, Kemper [12] proposed a technique that only requires
a probability vector m of size [Sr| . In the numerical iterations, for each m € S7, each entry Ry, ;, > 0
is generated (this implies n € Sy) and, given n, its index k in &, or its lexicographic position in St, is
computed in O(log |Sr|) operations, using a binary search.

We unify previous work by offering a thorough discussion of the structure of the underlying CTMC,
including the management of immediate transitions and vanishing markings. Our formalism is more
general than those assumed in [4, 5, 10, 11, 12], since we allow for marking-dependent arc cardinali-
ties and rates, subject to certain restrictions, hence our results include those previously mentioned as
special cases. Then, using an approach based on discrete-time Markov chains (DTMCs), we also re-
move the main restriction previously imposed on the decomposition of the GSPN: we allow immediate
synchronizing transitions. Finally, we consider a reward structure defined on the GSPN, and we show
how to compute the expected reward in steady-state in the Kronecker framework. This is of particular
importance for impulse rewards associated with immediate transitions, whose firing are only implicitly
represented in R.

The paper is structured as follows. Section 2 describes the notation used and recalls the main
concepts of Kronecker algebra, GSPNs, Markov chains, and rewards. Section 3 presents the expression
for the transition rate matrix of the CTMC underlying a generic GSPN, provided its transitions satisty
certain restrictions on the type of marking-dependency. The result is quite general, but not directly
applicable, since it requires one to compute the inverse of a matrix described as the sum of Kronecker
products. However, Sections 4 and 5 use it to derive computationally effective expressions for GSPNs
with timed and immediate synchronizing transitions, respectively. Implementation and application of
these results are shown in Section 6, including detailed information about computation time and memory
requirements. Section 7 contains a summary and discusses future extensions, including distributed

implementations and approximate solutions.

2 Notation and definitions

Except for IV, the sets of natural numbers, {0,1,2...}, and IR, the set of real numbers, all sets are
denoted by upper case calligraphic letters (e.g., A); vectors and matrices are denoted by lower and
upper case bold letters, respectively (e.g., a, A); their entries are denoted by subscripts (e.g., ax, Ay);
a set of indices can be used instead of a single index, for example, Ay y denotes the submatrix of
A corresponding to set of rows A and the set of columns Y. Superscripts denote families of related
quantities (e.g., A', A?). 0,4, and 1,, denote matrices with # rows and y columns, having all entries
equal to 0 or 1, respectively, while I, denotes the identity matrix of size x x z; the dimensions of these

matrices are omitted when they are clear from the context. Given a vector a, diag(a) is a square matrix



having a on the diagonal and zeros elsewhere. Given an n x n matrix A, rowsum(A) = diag(A - 1,x1)
is a matrix having the diagonal equal to the sums of the entries on each row of A, and zeros elsewhere,

while 6(A) is a matrix having the same nonzero pattern as A, but with entries equal to either 0 or 1.

2.1 Kronecker algebra

We recall the definition of the Kronecker product B = @~ | A* of K matrices A* € IR™**"* using the

convention that the rows and columns of both B and the matrices A* are indexed starting at 0. The
K K

generic element of B € IRITems T Lz ™ i

B, .. . . , , = Al 2 LLLAKR
(- (()n2tiz)na - ngp+ip,(...((J1)mati2)ma-)me+ie  — 11,01 22,52 KK

with 0 < 72, < ngp and 0 < jp < my, for £ = 1,...
so that the tuple (I1,ls,...[x) corresponds to row (...((l1)n2 + l2)ng - - -)nk + I or column (...((11)ms +

, K. Assuming a mixed-base numbering scheme

ly)ms - - -)my+li, respectively, we will also write the above quantity, more succinctly, as By is i) (1)
The Kronecker sum @5 | A* of K square matrices A* € IR™*™ is defined as

K K
@Ak = ZIM ®"'®Ink—1 ®lAk@IWH ”'®I”K'
k=1 k=1

2.2 Generalized stochastic Petri nets

A generalized stochastic Petri net (GSPN) is a tuple (P,7,Z,C~,Ct m° w), where:

o P ={pi,....pp|} is a finite set of places, drawn as circles in the graphical representation of the
GSPN. A non-negative integer vector m € IN?| called marking describes the number of tokens in

each place. Given a place p; € P, m; is the number of tokens in p; for marking m.
o 7 ={ti,...,ty7} is a finite set of transitions, PNT = (.

o 7 C T is the subset of immediate transitions, drawn as thin bars, while X = 7 \ Z are the timed
transitions, drawn as rectangles. The firing time of immediate transitions is zero, while that of
timed transitions is exponentially distributed.

e C~ and C* are incidence matrices of size |P| x |T|. Their elements are functions from IN'! to
IN. C;;(m) and C{;(m) denote the marking-dependent integer cardinality assigned to the input
arc from p; to ¢; and the output arc from ¢; to p; respectively. In the graph, these arcs are drawn
using an arrowhead pointing to the destination if their cardinality is not identically equal to zero.

The cardinality function is indicated on the arc unless it is identically equal to one.
e m’ is the initial marking. In the graph, the value of m? is written inside place p;, if positive.

e For any ¢; € 7, w; is a function from IN'"I to IR. w;(m) is the weight associated with transition
t; in marking m. According to whether {; is immediate or timed, this weight represents an
(unnormalized) firing probability, or a firing rate.



A transition ¢; € 7 has concession in marking m iff
Vp; € P, C;;(m) <m,, or Cp;(m)<m.

It any immediate transition has concession in m, it is enabled, and m is said to be vanishing. Otherwise,
m is said to be tangible and any timed transition ¢; with concession is enabled in m. In other words, a
timed transition is not enabled in a vanishing marking even if it has concession.

Some definitions of GSPNs allow one to disable a transition ¢; with concession in m by specifying a
zero weight w;(m) for it, or by introducing inhibitor arcs, drawn with a circle instead of an arrowhead.
In a marking m, an inhibitor arc from place p; to transition ¢; with cardinality ¢(m) disables ¢; if m; >
¢(m). Since these behaviors can be represented by an appropriate definition of input arc cardinalities
in our formalism, we assume, without loss of generality, that w;(m) > 0 if ¢; is enabled in m, and we
use inhibitor arcs in our models merely as a shorthand.

Let £(m) denote the set of enabled transitions in marking m. An enabled transition ¢; firing in

marking m yields a new marking n such that
Vpi € P, n; =m; — C;(m) + Cf;(m) = m; + C; j(m) (or n=m+ Cp ;(m)),

where C = C*+ — C~ is the incidence matriz of the GSPN. We can also write m-2n to express that ¢;
has concession in m and that n is obtained from m by firing ¢, regardless of whether ¢; € £(m) or not
(t; is not enabled if it is timed and m is vanishing, or if w;(m) = 0).

The firing probability of a transition ¢; enabled in marking m is
w;(m)

>_te€(m) wi(m)

(1)

It m is tangible, this corresponds to a race between the exponentially distributed firing times of the
enabled transitions, with rates given by w. In a vanishing marking, instead, weights define a probabilistic
choice, since the race model does not specify how to choose which transition to fire next when multiple

enabled transitions have the same zero firing time.

2.3 Reachability set

The reachability set S is defined as the set of markings reachable from the initial marking m® by firing
any sequence of enabled transitions. Formally, S is the smallest subset of IN!P! containing m® and such
that m € S, ¢; € £(m), and mZn imply n € §. Fig. 1 shows the skeleton of an algorithm to build the
set of reachable markings S (which we assume finite from now on). Particular care must be placed on
the implementation of statement 9, since the size of the set S to be searched is very large in practice.
Efficient methods include hashing or balanced search trees (e.g., AVL trees [18]). While not explicitly
stated in the algorithm, § should be stored as the union of two disjoint sets, Sy and Sy, corresponding
to the tangible and vanishing markings, respectively.

A function ¥ assigns an index to each reachable marking, according to a lexicographic order, indi-
cated by “»":

U:S§—{0,...,]S|—1} suchthat ¥(m)> ¥(n)<= m > n.



Algorithm BuildRS (input: (P,7,Z,C~,CT, m° w); output: §);

. 8§« {m°; /* S contains the markings found so far */
2. U« {m"}; /*U C S contains the found but unexplored markings */
3. whiled # 0 do
4. “choose a marking m from U”;
5. U—U\{m};
6. “compute £(m)”;
7. for each j € £(m) do
8. n — m-+ Cp ;(m);
9. ifn ¢S then
10. U —UU{n};
11. S «— SU{n};
12. end if
13. end for
14.  end while

Figure 1: Algorithm BuildRS

If an AVL tree is used, ¥ can be precomputed with a simple preorder visit of the tree, and its value can
be stored in the nodes of the tree. Then, given m € IN'"!  the value k = ¥(m) can be found in O(log |S|)
operations using the AVL tree augmented with this additional information (¥(m) = “undefined” for
any m ¢ S). The restrictions of U to the tangible and vanishing markings, can be defined accordingly:
Uy :Syr—{0,...,[S7| =1} and ¥y : Sy — {0,...,|Sv| — 1}.

In the following, with a slight overloading in the notation, we use a marking m to index data
structures (vectors and matrices) referring to S, Sy, or Sy. Strictly speaking, we should use instead
U(m), ¥r(m), and WUy (m), respectively, but this would make the expressions excessively cumbersome.
Nevertheless, it is important to stress this fundamental difference from a computational point of view;

finding the index of a marking is a potential source of additional complexity in any structured approach.

2.4 Underlying continuous-time Markov chain and rewards

We focus on the steady-state analysis of the continuous-time Markov chain (CTMC) underlying a GSPN,
described by the infinitesimal generator matrix Q € IRISTI¥IS7l which we assume ergodic (and finite,
since S is finite):

Q=R-A=Rr7+Rrv(Ls,— Uvy)'Uyr — A, (2)

where R is the transition rate matrix, A = rowsum(R), and Ry 7 and Ry y (Uyr and Uy y) describe
the rates (probabilities) of going from tangible (vanishing) markings to tangible or vanishing markings,

respectively. The entry of Ry (Rygv) corresponding to the row for m and the column for n describes



the rate fromm € Sy ton € Sy (n € Sy):

Y. wi(m)

tjeé'(m),mt—]/n

The entries of Uy y and Uy 7 are defined analogously, using the firing probability of immediate transition
t;, given by (1), instead of the weight w;(m). For a discussion of how to generate Q in practice, see
[2, 6].

We observe that Amm = >;,ce(m) Wj(m) is then the total rate leaving marking m € Sy, and it
equals the inverse of hyy,, the expected holding time in m.

Let 7m be the steady-state probability of a tangible marking m (vanishing markings have zero
probability). Then, the steady-state probability (row) vector w € IRI7! satisfies the balance equation

- Q =0 sy subject to the normalization - Lis, 1 = L. (3)

We can specify a quantity of interest for the GSPN using a reward structure (p,r), where p(m) is
the reward rate gained while the GSPN is in marking m, and r;(m) is the reward impulse gained when

transition {; € T fires in marking m. The expected reward rate in steady state is then

Z Tmp(m) + Z Z ®jmr;(m (4)

meSy mes t;e€(m)

where ®; p, is the rate at which transition ¢; fires in steady state in marking m. If we let ¢ € IR/l be

the vector describing the rate at which each marking is entered in steady state, @, is obtained as

For m € 87, ¢y = Tm >y ce(m) Wi(m) = T Ay m. For m € Sy, instead,

= Z 7o Fom,

HEST

where, for n € Sy and m € Sy, the corresponding entry of matrix
F = RT,V(I|$V| - va)_l S RISTIxISv] (5)

describes the rate at which a vanishing marking m is entered after leaving a tangible marking n and
before reaching the next tangible marking. If no reward impulse is defined for immediate transitions,
then Eq. (4) reduces to

Z;S Tm (p(m)+ Z(: )Wj(m)rj(m))-

In this work, we consider the structure of both Q and F, and the computation of 7 and ¢.



3 Kronecker expression for the CTMC underlying a GSPN

We now show how the ideas in [4, 5, 10, 11, 12] can be applied to individual places, not just to sub-
GSPNs. Our goal is to clarify the relationship between Kronecker algebra and GSPNs, while relaxing
several important restrictions on the type of interactions. Later we will merge individual places into

“macroplaces”, which corresponds to the notion of sub-GSPNs.

3.1 Using the state spaces of individual places

The first extension regards the type of marking-dependency allowed in the GSPN. We allow the weight
of a transition to be expressed as the product of “local effects” due to the number of tokens in each

place:

Yim &€ S,\V/t]‘ € T, C7_3,j <m = W](l’l’l) = w; . H wi7j(mi), (6)
pi€P

where w? can be interpreted as a constant “reference” weight, while the values w; ; are dimensionless
scaling functions [1]. This “independence of effects” in the marking dependence implies, for example,
that if markings m and n differ only in the number of tokens in p;, and if ¢; is enabled in both,
w;(n) = w;(m) - w; j(n;)/w; j(m;). If a weight w; does not depend on the number of tokens in p;, we
assume, without loss of generality, that w; ; is identically equal to one. Note that we do not require the
weight w;(m) of a timed transition #; in a vanishing marking m to be zero. Doing so would make the

specification of w for a given GSPN more difficult in practice, and is not required by our approach.

Analogously, the dependence of the matrices C~ and C*, hence C, is assumed to be of the form
Yme S,Vp, € P,Vi; €T, C;j(m) = Z]‘(mi)v (7)

where “x” is one of “—7, “47, or nothing, and 37, is a function from IV to IN.

We can now state a theorem expressing the matrices Q and F of the CTMC underlying a GSPN in

terms of smaller matrices related to each place-transition pair.

Theorem 3.1 Consider a GSPN with finite reachability set S satisfying Eq. (6) and (7),
and let n;—1 be the bound of place p; € P, that is, forany m € S, m; € {0,1,...n;—1} = S*.

Define
R-Y o @ W VST @ W ®)

t;EX piEP t; €1 piEP
where W*7 is a square matrix of size n; X n; whose entry in position (r,¢), for r,c € S*, is

given by

» w;;(r) ifr > B (r)and c =7+ B ;(r
Wo(r.o) — {O,<> > 8i,(r) + Bu(r)

otherwise

Also, define
A = rowsum(R) = 1w () rowsum(WH) = Y wr - @ 44 (9

t;EX piEP t;EX piEP



I = rowsum(U') = Z w3 ® rowsum( WZ’] Z w3 ® r (10)

t; €1 piEP t; €1 pi€EP
and T' = Iy — 6(I"). Then, the matrix
Ql — R/ X (I _ (T/ _I_ 1-1/)—1 . U/)_1 . Al (11)
satisfies Q = Q. 5, and F = Qf_ , where Q and F have the meaning defined in Eq. (2)
and (5).
Proof: Matrices with superscript “/” have row and column set S’ = {0, 1,... ( [L,erpn ) 1},
or St x -+ x SIPIif we identify a tuple with its mixed-base value. In the following, however,

we partition matrices and permute their rows and columns so that the markings appear in
lexicographic order within the sets St, Sy, and &\ S§. This is for illustration purposes only.

First, we prove that

— (Z wh - Q) Wm‘) => w - [[Wiln= > wim). (12)

t;EX P EP t;EX P EP ty
t;eX  m—n

Let’s consider the contribution to this value for each timed {; € X, by doing a case analysis:

L If mln, the contribution should be w;(m). Indeed, for all p; € P, Wil | = w; ;(my),

hence the contribution of ¢; is

wy - T wij(mi) = wi(m).
pi€P
2. It ¢; does not have concession in m the contribution should be zero. Indeed, there must
exist a place p; such that m; < C;;(m) = 3;;(m;). This implies W}r{lnl = 0, and the

o i N -
contribution of ¢; is w% - I[,.ep Wyl 1, = 0.

3. If mZ2n’ # n, the contribution of ¢; should be zero as well. Indeed, there must exist
a place p; such that n; # m; + C, ;(m) = m; + 3, ;(m;). Hence, W}r{ n, = 0, and
w; - lp,er Wiit;m, = 0

Thus, the contribution of each transition in the summation is correct. An analogous argu-

ment allows us to show that

Upn= 2 w;m) (13)

iy
t;el,m—n

From Eq. (12) and (13), we can conclude that Uy, o =0, Ug sns =0, R sns =0, and
that the matrices Ry 7, Rryv, Uyyr, and Uyy for the underlying GSPN, with their rows

and columns ordered according to W, can be expressed as:

R > Y D/ g1 / 1= /
RT,T - R5T75T RT,V - R5T7$V UV,T =TI Sy.Sv U5v75T UVV =TI Sv Sy U5v75v
(14)



(the normalization F/;i,sv is required because the weights of the immediate transitions

enabled in a vanishing marking are not required to sum to one, while the entries in Uy ¢
and Uy,y are probabilities). We can conclude A = Aj_ s as well.

Hence, letting “o” denote submatrices whose value is irrelevant,

(I (T+r)"-u)"

| 0 0 0 0 0
T
I - 0 1_‘/5\/75\/ 0 UZSVvsT U:SVvsV 0
L [ ] [ [
- 4\ —1
0 0 0
1 1
I F/5v75v :SV7$T F/5v75v :Swsv 0
L [ [ [ ]
i I 0 0]
—1 —1
_1_‘/5‘/75\/ :SV7$T I- F/5v75v :Swsv 0
L [ [ [ ]
1 o o]
—Uyr |I-Uyy |0
i [ [
[ I 0 0
(I — UV,V)_IUV,T (I — Uv7v)_1 0
[ [

Substituting this value in the definition of Q' given in Eq. (11) completes the proof:

R, . |RL s |0 [ A oo
Q = o o o -(I—(T’+F’)_1-U') - o oo
L [ ] [ ] [ ] [ ] [ ] [ ] ]
[ Ryqr |Rry | 0] I 0 0 Al0|O
= ° ° (I-Upy) Uy | (I-Uypy) |0 | —| o
i [ ] [ ] [ ] ] [ ] [ ] [ ] [ ] [ ] [ ]
[ Rrr+ Rrv(I—Uyy)'Uyr — A | Rrv(I-Uyy)™t |0
— o .
L [ ] [ ] [ ]

F|O
= o | o
| o o0

If the number of tokens in p; is always at least m; > 0, we can, of course, define S* = {m,;, ..

or, equivalently, change the definition of the GSPN so that the range of tokens in p; becomes S°

1

Loy —

{0,...,n; —m; — 1}. This would not affect the proofs in this paper, but could improve the efficiency of

the implementation.
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Figure 2: A case where rnln7 neS, butmégs.

It is important to stress that R, s s and Ugn s s cannot be guaranteed to be zero (nor can Ry, o,

but this is because we allow timed transitions to have concession in vanishing markings). We now

formalize this observation, already implicit in previous works using the Kronecker approach, since it is

fundamental for a better understanding of the nature of the matrices R" and U’.

Lemma 3.1 The matrices R’ and U’ defined in Theorem 3.1 satisfy the following “forward
reachability condition”:

meSr AR, >0 = nes and meSy AUy, >0 = neS (15)
However, the analogous “backward reachability condition” does not hold:

neS AR, >0 # meSr and neS AUy, >0 # meSy (16)

Proof: It is straightforward to show that Eq. (15) holds when the premises of Theorem 3.1
are satisfied. We simply need to observe that, given the definition of R’, Ry, > 0 and
m € Sy imply that there is a transition ¢; € £(m) and that its firing leads to n; thus, n is
reachable. An analogous reasoning holds for U’ and m € Sy. To show that Eq. (16) holds, it
is sufficient to give an example; we do so for R’. Consider the GSPN in Fig. 2, having positive
finite transition rates. The firing of two transitions t5, f5 could lead to n = (0,1, 1): by ¢,

from marking (1,0,0), and by #1, from marking (1,0, 1). In our notation, ny = ny = nz = 2,

Thus, the contribution of #; to Rfg; o1 is w] W}éWS}Wf} = wj > 0, hence Ry 4, > 0.
However, given the initial marking, m® = (1,0, 0), the marking m = (1,0, 1) is not reachable.
O

Theorem 3.1 gives a characterization of the infinitesimal generator Q and of the matrix F of a GSPN

by focusing on the effect of each transition on each place. An alternative statement of this theorem, is,

10



@ﬂ%ﬁ %@ﬂ---m

Figure 3: A GSPN where |S7| < |S'], and one where |S| = |S'|.

of course,

-1
_ ' ' - ' /
Q - R5T75T + RST Sy (I|5V| r 5v75v USV 5\/) U5v75T - A5T75T
F = R o (s, —I's' s -Us o)
- Sy, Sy \HSv| T 4 sy .Sy Sy, Sy :

In either form, however, this result has little practical value in itself, since both expressions contain
an inverse which cannot be expressed using Kronecker operators on smaller matrices. One case where
Theorem 3.1 has a direct application is when there are no immediate transitions. Then, S7 = S, Sy = 0,
and Eq. (2) simplifiesto Q =R - A=Ryr - A =R} 5 — A5, 5.

However, a solution approach based on this idea alone has limitations, due to the restrictions that
the GSPN must satisfy. Even more importantly, though, the size of Q' is enormous, potentially leading
to inefficiencies. Consider for example the GSPN in Figure 3(a), having positive finite transitions rates.

If the initial marking contains a total of n tokens,
kE—1
NE ( n+n ) < 1S = (n+ 1)~

From the simple case when n = 1, it is apparent that the difference, k vs. 2%, can be enormous. For
this type of closed networks, Buchholz [4] suggested a solution method based on Kronecker algebra
that does not create unreachable states, applicable when the interaction between submodels is of the
asynchronous type described in the introduction.

On the other hand, it is possible for & to equal §’. This happens, for example, in a live free-
choice GSPN with capacities whose undirected graph obtained by ignoring arc directions is acyclic
(this is a generalization of [13, Property 3], which refers, however, to unbounded marked graphs).
Another example is that of open acyclic queueing networks with communication blocking due to bounded
buffers [17] which could be named “open state machines with capacities” in Petri net terminology. The
transitions in these nets have at most one input and one output place and, if capacities were removed,
every place would become unbounded. See the GSPN in Figure 3(b) for a simple example of a tandem
network. Indeed, when S’ = Sz, Ur(m) is simply the mixed-base value of m, hence W7'(k) does not

have to be stored explicitly. Unfortunately, such a situation is rare.
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3.2 Merging places into macroplaces

The type of marking dependence expressed by Eq. (6) and (7) is quite general, but for example, it does
not let us specify a firing rate proportional to a nonlinear function of several places (e.g., min{my, my}).
We now show how this limitation can be overcome in practice by merging places (p; and py, in our
example).

Consider a GSPN A = (P,7,Z,C~,C*T, m" w) with finite reachability set S, and partition P into
P={P,.. .77|73|}, where P; = {p;, - 'pilﬁil}' Then, define an order-preserving bijection v : § — & C
NP

v (ml, . ,m|p|) = (rhl, ey rh|73|) satisfying  v(m) > y(n) <= m > n, (17)
where m; is the position, in lexicographic order, of (m;,, ... ’milﬁ'l) in the set obtained by projecting &

over P;.
Lemma 3.2 Given A, 73, and 7 defined as above, consider the “compacted” GSPN
A= (P, T=T7T,7=1,C,C" i’ = y(m°),w),

where the input and output arc cardinalities are defined to ensure that, in corresponding
markings m and v(m) =m, t; € 7 has concession in A iff it has concession in A and that,
in this case, il = y(n) in Aiff mZnin A , while the weights for ¢; are defined to have

the same value in corresponding markings:

e If t; € £(m) and its firing does not change the marking of any place in 752', that is, if
Vp € P Cp(m) <my A C;(m) = Cf;(m), define C(rh) = Cf,(rh) = 0.

o If t; € £(m) and its firing changes the marking of some place(s) in 752', that is, if
Vp € P o Ci(m) < my A3y € i, Cr(m) # Cf(m), define C7(rh) = 1h; and
C?,(rh) = ;.

o Otherwise, ¢; is disabled in m, that is, Ip; € P, C;;(m) > my; then, define é;](rh) =
m; + 1, while the value of éj'](rh) is irrelevant.

e Define w;(m) = w;(m).

Then, the transition rate matrices R and f{, defined by A and 121, respectively, are identical.

Proof: Omitted for brevity (it is sufficient to show that the stochastic processes described
by A and A are identical). O

Lemma 3.2 allows us to compact an arbitrary set of places into a single place, which, together
with the transitions connected to it, corresponds to a sub-GSPN of [11, 12]. This operation must be
performed when the marking dependencies in the GSPN are not of the type allowed by Theorem 3.1.
It might be performed, even when the theorem is applicable, to reduce the number of matrices involved
in the description of R at the cost of increasing their size.

From now on, macroplaces are indicated as dashed boxes surrounding sets of places; the compacted

GSPNs are not shown explicitly, since they would not add to the comprehension of the model.
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4 Timed synchronizing transitions

The contributions in [4, 5, 11, 12] have assumed that the GSPN is decomposed in such a way that each
iteration of the solution method performs Kronecker products of few large (but manageable) matrices,
while Theorem 3.1 uses many (|7 |- |P]) small (n; x n;) matrices.

Lemma 3.2 addresses the size issue: we can merge places, thus obtaining |7 - |75| larger matrices. In
this section, we show how the number of matrices involved can be further reduced by merging transitions,
or rather, the corresponding matrices. The results are similar to those derived by previous authors, who
assumed all synchronizing transitions are timed, but we present them here for three reasons. First,
we exhibit substantially different proofs for these results; [4, 5, 11, 12] consider a set of sub-GSPNs
and combine them using synchronizing transitions, thus Kronecker operators are introduced only at
the last step. Instead, we start from the Kronecker expression of Theorem 3.1 for the entire GSPN
and derive our results by exploiting the properties of Kronecker operators. Second, our results include
the management of immediate transitions and vanishing markings, while previous works have simply
assumed that these are eliminated locally using the traditional approach. Finally and most importantly,

our result apply to a larger class of GSPNs, since a more general marking-dependent behavior is allowed

by Theorem 3.1.

4.1 Partitioning the set of transitions

Without loss of generality, we assume from now on that each transition in 7 has at least one input or
one output place: Vt; € 7,dp; € P, C;; Z0 V C;»':j # 0. Then, let 78 C 7T be the set of “local”

transitions which affect, or are affected by, only a single place p;:
Vp; € P Ti:{tj€7'|‘v’p;€73,p;7épi, CL=Cf,=0 A wmzl}, (18)

and 7* =T \ U,,ep T* be the set of synchronizing transitions which instead affect or are affected by at
least two places. Clearly, these sets constitute a partition of 7. Also, let X* =7T°*NAX,7I*=T°* NI,
X=T'NnX,and I' =T'NZL.

Lemma 4.1 Consider a GSPN satisfying the requirements of Theorem 3.1. Then,

R'=> vj- QW'+ PR | U=> v QW+ HU, (19

t;EX® pi€P pi€P t;EeI* pi€P pi€P
A= w- QA"+ PHa ') w - QIr’+@r. (2
t;EX® piEP piEP t; eI P EP pi€P

where R', U*, A", and I'" are square matrices of size n; x n; defined as

Ri= Y w) WY U= Y w WY A= 3 wieAY | r= Y eI

t;EX? t; eI t;EX? t; eI

Hence, as special cases, R\ = A'=0if X' =0 and U =TI =0 if ' = .

13



Proof: We only prove the result for R’, the proof for the other matrices is analogous. Given
the condition specified by Eq. (18), we know that W' =T, if p; # p; and ¢; € T°. Then,

the proof is a simple matter of matrix manipulation within the Kronecker expressions:

R o= Y @ W

t;EX pi€P

- T @WEE Y Y u @ WH
T EX® piEP Pi€EP teX" m€EP

- Zw]*,.®wi,j_|_z Zw;'1n1®"'®1m—1®Wi’j®1ni+1®"'®1n|m
t;EX® pi€P Pi€EP t;eX"

= Zw;'®wm‘|‘ZIm@"'@Ini—l@(Z‘w;'wm)®Ini+1®"‘®1n|p|
texXe pi€P pi€P e

— 2 w;@)WZ’]+ Z:PIH1®®I7%—1®RZ®ITM+1®®In|73|
tyex® pi€ pi€

= Zw?-@Wi’j+@Ri. O
texe pi€P pi€P

This partition reduces the number of Kronecker product terms from || to |X*| in R’ and from |Z| to
|Z*| in U’, respectively, and adds one Kronecker sum to both. Transitions satisfying Eq. (18) arise after
applying Lemma 3.2, that is, after “decomposing” a large GSPN into several smaller sub-GSPNs. Fach
sub-GSPN corresponds, in our terminology, to a (macro)place, plus the set of transitions local to it.
This transformation does not have to be explicitly performed in practice, only its result, the matrices
corresponding to the set of macroplaces, need to be computed. A good partition of the places results
in a compacted GSPN where most transitions are local and the number of tokens in each compacted
place (number of markings in the sub-GSPN, in the terminology of [11, 12]), is manageable. Methods

to determine a good partition are beyond the scope of this paper and are left for future research.

4.2 An efficient Kronecker expression for the CTMC

Given any GSPN, we can always apply Lemma 3.2, resulting in a compacted GSPN satistying the
requirements of Theorem 3.1, then apply Lemma 4.1. If the partition is such that all immediate

transitions are local, we can then restate the main results of [11, 12] in a more general setting.

Theorem 4.1 Consider a GSPN satisfying the same requirements as for Theorem 3.1, and

such that all immediate transitions are local:

I'=0 = U=Uu, 7°=2x" (21)

P EP

Then

Q@ = Y@ (WX @ (X -

t;EX® P EP P EP
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where
Xi = (L, - (T 4+ 1))~ I = rowsum(U’) T =1, —&(I'),

satisfies Qg s = Q, with the meaning defined in Eq. (2).
Proof: First, we observe that condition Eq. (21) implies I = @, cp I'and T = ®,.cp T

In other words, a “global” marking m is tangible iff all its “local” components are tangible.

We can then manipulate Q" as follows:

Q@ = X ® (WX B (R X) A
pi€P

texe pi€P
= T e QWX+ @R-@X + P (RUX) - PR QX A
texe P EP P EP P EP P EP P EP P EP piEP
D/

— (Z wh - Q) W 4 @Ri) XX +D - A
texe P EP P EP piEP
— R'. ®Xi—|—D/—Al

P EP

Partition S' into S and S}, corresponding to local markings enabling only timed local
transitions, or some immediate local transition, respectively, and rearrange the rows and

columns of X accordingly:

X' = (L, - (T'+ I')"'U) " = l II){’T N? ] ,
v | Nvy
where the subscripts “T,T7, “V,T”, and “V, V" have the usual meaning, but applied to the
local matrix for place . N&V = (Iva,Sv — (Ffsv,sv)_l 'Ugv,&/)_l describes the expected
number of visits to each local vanishing marking before reaching a local tangible marking,
starting from each each local vanishing marking, while P&T = Ngv,&/ : (ng,&/)_l : UESV,ST
describes the probability of reaching each local tangible marking, starting from each local

vanishing marking.

We continue assuming that [P| = 2, the general proof follows exactly the same idea. Local
matrices are partitioned according to whether the corresponding local markings are tangi-
ble or vanishing (regardless of whether the global markings are reachable or not). Global
matrices are partitioned according to the following order: tangible states, vanishing states
enabling only immediate transitions in 72, vanishing states enabling only immediate transi-
tions in 7!, and vanishing states enabling immediate transitions in both 7! and 72. First,

we show that the tangible rows of D’ are zero:

D/ — (R1X1 @ R2X2) o (Rl @ R2)(X1 ® XQ)
= R'X'@IL,+1I, o RPX? - R'X' @ X* - X! ® R*X?
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| | | | « 43 ~
L 1[0:p2 | V][] 00:pp2 = taib = O01:pipy
2 B NZ LN A N )
2 tra 1 tsic o tgib 430 | |12 pia ts:C ty:2

I 2V Y

Vo[ lips | V[ 1ipa | ||| 10:papy [« t4:3 11:p3py

0|00
.

[ ]

)+ (L, — X') @ R*X?

. olo] s [2f] o me

(22)

since X' and I, have the same tangible rows. Then, we show that the tangible columns of

&Qyp.ep X and (I-(T'+ 1_")_1U’)_1 coincide:

X'@ X2

(L, | o L,| 0
i) ]
T, o, 0 0 0
I, Pl TN |0 0
Plooli, | 0 [Ny B, 0
[Py 0Py [Py @ Ny | Nyy @ PYp | Nyy @ NY

(23)

The blocks in the first (tangible) column of this last matrix contain the correct values,

since the top left block is simply the identity and the other blocks correctly describe the

probabilities of reaching tangible markings from vanishing markings, which are the values
in the corresponding blocks of (I — (T + 1_")_1U’)_1 . From Eq. (22) and (23) we can then
conclude that Q% 5. = Q, as in the proof of Theorem 3.1.

In practice, Theorem 4.1 is used to generate only the relevant portion of Q" in the numerical solution

0.

method. In other words, we eliminate the vanishing markings “on the fly” (as in [4, 5, 10, 11, 12])

tiexe

> i (W” ' Xi)T,T + D (Ri ' Xi)T,T
pi€P pi€P

_ ( St @ Ayt @ AfT,T).
texe pi€P

P EP
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We observe that both Q" and Q" describe Q, but the two normally differ. For example, consider the
GSPN in Fig. 4, having a single tangible state and three vanishing states (the example is trivial, but it
is sufficient to illustrate the point). Assuming that the rates of timed transitions ¢, t3, and 5 are a, b,

and ¢, respectively, and that the weights of transitions ¢ and ¢4 are 2 and 3:

Rlz 0 a R2: 0 b Wl’sz 01 W275: 01 Ulz 00 U2: -
0 0 0 0 0 0 0 0 20 30

From which we obtain

R L B Y B PR B P B E B E

0 2 0 3 0 0 00 11 11
and
0 b a c 1 000 00 00 00 00
00 0 «a 00 00 3000 0300
R/ = T/ = U/ = 1_‘/ —
00 0 b 00 00 20 00 00 20
0000 00 00 02 30 0005
The resulting Q' and Q" matrices are then different:
a+b+c b—l—%c a—l—gc c a+b+c b4+¢c a+c¢ c
2 3
’_ a sa 5 Y " _ 0 a 0 a| A
Q b 2h b b Q 0 0 b b '
0 0 0 0 0 0 0 0

Indeed, the difference between Q' and Q" is already apparent from Eq. (23). The diagonal blocks
I} @ Niy and Ny, @ I 1 correctly describe the expected number of times the corresponding global
vanishing markings (enabling only local immediate transitions in 72 or 7', respectively) are entered,
given that a timed transition firing leads to the corresponding diagonal block. However, the last three
blocks on the bottom row do not reflect the same quantities when a timed transition firing leads to
vanishing markings enabling immediate transitions in both 7' and 7?. In particular, Py, @ N{
describes the correct quantity only if we could assume that all enabled immediate transitions in 7' keep
firing before any of those in 72 do, which is not necessarily the case, while Ny.y, @ P{ ;- assumes the
opposite. Finally, N%/y ® N%/y does not reflect the number of times global markings are entered at all.

This leads us to the following observation.

Corollary 4.1 If the GPSN of Theorem 4.1 is such that the firing of any timed (synchro-
nizing) transition ¢; € X'* enables (local) immediate transitions in at most one set 7°¢, for
some p; € P, then Q5 s = F, as defined in Eq. (5).

Proof: The condition for this corollary implies

o -
Sy C | Shxe xS xS xS x - x 8P
P EP
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5

As discussed in Theorem 4.1, the blocks on the columns corresponding to this type of vanish-
ing markings are computed correctly in &, cp X', see Eq. (23). The bottom rows of Eq. 23,
corresponding to any (unreachable) vanishing markings m enabling immediate transitions
in more than one set 77, are irrelevant, since Lemma 3.1 guarantees that R, = 0 in this

case. a

Immediate synchronizing transitions

It some of the synchronizing transitions are immediate, Theorem 3.1 still applies, but Theorem 4.1,
which allows the efficient computation of the solution in practice, does not. In this section, we show
how “preservation of the vanishing markings” [8] can be used to remove this limitation, also present in

11, 12].

5.1 Embedding a DTMC

First, we summarize the main ideas in [8], which examines an alternate method to compute #:

o Define the transition probability matrix P of the embedded DTMC, expressing the probability of
going, in one firing, from any marking m € S to any other marking n € S, regardless of whether

they are tangible or vanishing:

A"'Rry | A7 Rey

P = 24
Uyr ‘ Uyyv (24)
e Compute the steady-state probability vector 4 € IR!S! of the embedded DTMC:
v -P=x subject to the normalization - Lisjxa = 1. (25)
e Obtain both w and ¢ from ~, using the holding times in the tangible markings as weights:
Ym - hp, Ym
Ym e Sy, 7 = and YmeS, ¢, = . 26

The correctness of the method can be verified by observing that, from

e | 1[A_IRT’T‘A_IRT’V]—[ ]
YT | Vv Uvr ‘ Uvy Yr | Vvl

we can obtain vy = v AT Ry (I — va)_l, and, substituting it in the above equation,

yrAT! : (RT,T +Ryy (I—-Uyy)™! UV,T) =0.
——
7T~(‘YT~A_1'1|S|X1) Q
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We can then divide both sides of the equation by the constant v - A™" - 1is/x1, resulting in - Q = 0.

In [8], it was found that the solution time is often greater than with the “elimination” approach

based on Eq. (3). This is due to the number of nonzero entries in P, normally larger than in Q, and,

frequently, to a slower numerical convergence. However, pathological cases where P has substantially

fewer entries than Q arise when N tangible markings can reach a small set of vanishing markings, which
can, in turn reach M tangible markings. This “N-to-M switch” behavior corresponds to O(N + M)
arcs in P and O(N - M) in Q, hence it affects the elimination approach negatively both in terms of

storage and execution time, although the number of iterations in the numerical solution might still be

smaller with elimination. The use of preservation results in the following analog of Theorem 3.1.

Theorem 5.1 Under the same conditions of Theorem 3.1, the matrix

P/ — (T/ . Al _I_ 1-1/)—1 . (T/ . R/ _I_ U/)

satisfies P ¢ = P, as defined in Eq. (24).

(27)

Proof: The pre-multiplication of A" and R’ by T’ eliminates the effect of timed transitions
having concession in vanishing markings. However, if we focus on the reachable states, the

statement of the theorem is equivalent to saying that

/
St

7ST

-1 /
) RST,S

P_

= ; — ;
1_‘5\/75‘/ ) U5v75

(28)

This equality then follows from the definition of P and the meaning of R’ and U’ already

established in Theorem 3.1.

numerical solution.

Eq. 28 is, of course, the expression used in practice for a

a

The efficiency of a solution based on Eq. (28) is improved by exploiting the existence of local

transitions (Lemma 4.1):

-1

(Em@a @)
t,exs  PeP reP ) g

N

tiexe

pi€P P EP

S QW @)
Sp.8

—1

pi€P P EP

(Z.wf*" &R I' + @rf)

Sy, Sy

[

(29)

S @ Wit @u)
Sv.s |

t;el* P EP P EP

since this expression for P reduces the number of Kronecker products to be performed at each iteration.

5.2 Using partial elimination to improve solution efficiency

A disadvantage of the approach just described is that the size of the probability vector « for the DTMC

is now |S], considerably larger than |S7| in many practical models. Analogously, the size of the matrices

for place i is given by the projection of S onto its :-th component, S*

{l:dm € &, m; = [}, regardless

of whether markings satisfying m; = [ are vanishing or tangible.
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It was already observed in [8] that it is possible to eliminate a subset of the vanishing markings,
preserving only those involved in large switches, in the hope of achieving the best memory—execution
tradeoff. We can exploit the same idea in our approach, but for a different purpose. Partition the local

state space for place 7, S, into
o Sih={l:¥Ym € Sy, m; = [}, the set of local tangible markings.

e Si={l:Fm e Sy,m; =1 A I*NE(m) # P}, the set of possibly synchronized local vanishing
markings.

e Si ={l:Vm e Syym; =1 = I°NEm) = 0}, the set of non-synchronized local vanishing
markings.

Any immediate synchronizing transition can be enabled only in markings having components in S»US%,
that is, in S = Sy N ((SFUSE) x - x (SPTUST).

We now define a “partially eliminated” (or “partially preserved”) DTMC with transition probability
matrix P and state space S = Sy U S, (K stands for ‘keep”) which can be used to compute ® and ¢
more efficiently than from P. Partition the matrices W/, R, Ui, A% I A', and I'*, according to
the sets S} = 8% U S§ and Si. For example,

i _ KK ‘ K,L
= l R} i | R ] ‘
LK L.L

Then, assuming that the rows [UZJ(|U27L] are already normalized (this can be easily enforced since

each U’ is built before starting the overall solution), define the matrices
Wii — Wi awiio L (I-ul VU
= Krx T WgL- ( - L,L) “Ur ks

. . . . _1 .
i 7 7 7 7
R = Rigx+Rg- (I — L,L) - U7, i, and

. . . _1 .
i 7 7 7 7
U = Ugg+Ugp- (I — UL,L) UL k-

Given this definition, the blocks for the rows and columns of Sk in A™, I, A’, and I'* still contain

[15at))

the correct row sums for the corresponding matrices. Then, we can state our final theorem, which

allows the efficient solution of a structured GSPN with immediate synchronizing transitions.

Theorem 5.2 Under the same conditions of Theorem 3.1, define the transition probability
matrix

- -1
( S 0 @ A+ B A) - ( S w QW+ @ R)
S Sp.Sx

t;EX® P EP P EP Sp.S7 t;EX® P EP P EP

0
Il

= )
(Lo @i @) (L @vieu]
L SoSk

t;el* P EP P EP So.8s t;el* P EP P EP

(30)
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and solve for 4 - P = 4 subject to the normalization 4 - 1is,jx1 = 1. Then, the steady-state
probability and the rate of entering the markings in S are

Ym
~ ) Vm € SI"? (,b =
ZI’IEST ‘)/1’1 . hn § m

Proof: We only need to show that P correctly describes the DTMC obtained when embed-
ding the GSPN at the times when markings in Sy USs, but not those in Sy = S\ (SrUSs),
are entered. In other words, ¥ should differ from -~ only by a multiplicative constant,

where [ | 7] = is the solution to Eq. 25, which, in block form, is

Pr x ‘ Prr
Prx ‘ P

[Yic|vL] l ] = [vx vzl

We can then obtain v, =5 - Prp - (I— PL7L)_1 and, by substitution,
Y - (PK,L (I— PL,L)_1 -Prrx+ PK,K) = Yi-

Then, it is sufficient to show that (PK’L (I— PL7L)_1 -Prx+ PKJ() and P coincide. For
any m,n € Sk, (PKvK)m,n represents the probability of going from marking m € Sk to
marking n € Sk in a single firing, while (Pg - (I—Pg )" - Prr),, represents the
probability of going from m to any marking m' € Sy, visiting any number of markings in
Sr, and finally leaving Sy, from some marking m? (possibly the same as m') to reach n in

one firing.

Assuming that m € S7 and n differs from m in at most the position for place p;, the

corresponding entry Py, p 1s

-1
~ _ * iJ : * VA R
Pun = ( > Wi Q) A+ D AK,K) : ( 2w QW+ D R)
t;exe pi€P pi€P mm t;EX® pi€P pi€P mn

= Ar_nl,m' ( Z w;- H Wi’r{um + f{lfnhnz)

texe pi€P

¥ i i \71 i
= Agln | 2w T [ Wikm + X Wil 2 (I—ULL)mlszani

texse pi€P mles, mZes: o

-1
+ lez,nl—l_ Z lenhmll Z (I_ULL) lUlml27nl

1-¢l 2-cl
m; eSy m;es;

(if n and m differ in more than one position, the cause must be the firing of a synchronizing
transition, so the “local term” for place p; in the last expression is absent). In any case,
Ar_n{m is just a normalization factor (if m € S, Fr_n{m would be used instead), so the

expression indicates the required probability. The key issue is that the order of firing of
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Figure 5: A GSPN with an immediate synchronizing transition.

local immediate transitions does not affect the probability of reaching a given n € Sk, since
their weights and disabling are decided locally: the events “going from m} to n;” for each
p; are independent, so their product correctly describes the overall probability of going from
m! to n. 0

We stress that our approach might not eliminate every vanishing marking enabling only local imme-
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diate transitions. For example, consider the GSPN in Fig. 5(a). We have S; = {(0),(2)}, 8§ = {(1)},
St =10,8 = {(0)}, S = {(1)}, and S = {(2)}, as shown in Fig. 5(b). After eliminating the local
markings S; from the second sub-GSPN, we obtain the “local reachability graphs” in Fig. 5(c). Fig.
5(d), 5(e), and 5(f) show the graphs describing P’, P, and P, respectively. The dotted arcs in Fig. 5(d)
correspond to timed transitions with concession in vanishing markings, which lead to markings in S’.
These are not present in P’. Hence, (global) marking (1,2) is unreachable and is absent in P and P.
Furthermore, markings (0,2) and (2,2) are absent from P, because their second component, 2, enables
only local immediate transitions in the second sub-GSPN, (2) ¢ S%. However, marking (1,0) is still
present in P, even if it enables only 5, a local immediate transition. This is because its first compo-
nent, 1, corresponds to having a token in ps, which is a condition for the enabling of the synchronizing
immediate transition t7. In other words, we cannot eliminate the local marking (1) from the local state
space for the first sub-GSPN, because this would eliminate both global markings (1,0) and (1, 1), and
eliminating (1,1) would make it impossible to capture the effect of synchronizing transition ¢; in the
Kronecker products of Eq. (30).

6 Numerical solution

Applying Theorem 4.1, we use the generator matrix Q = Qj_ 5. to compute the stationary distribution
7w € IRIT! of the CTMC underlying the GSPN according to Eq. (3). We use an approach based
on Kronecker algebra to avoid storing Q explicitly, so only iterative methods which do not require the
modification of Q itself can be used effectively. Adopting the Jacobi method with overrelaxation (JOR),
we transform Q into the iteration matrix M = (1 —w) - I4+ w - R - diag(h) and solve the eigenvector
problem:

T M=m=w subject to - 1lis, 1 = L.

Successive approximations of 7 are obtained iteratively as

bl bl oM (31)

starting from an initial probability vector w[% satisfying wl% > 0 and W[O]IISTlxl = 1. If the CTMC is
ergodic and if the iterations converge, JOR is guaranteed to result in the correct solution, regardless
of the value of 7%, that is, @ = lim,,_. 7™, if this limit exists. We do not discuss the choice of the
relaxation parameter w, 0 < w < 2, which affects the convergence rate [16]; for a detailed analysis of
numerical techniques for the solution of Mark